

Water Quality Updates in the Neches River Basin

Anna Gitter-Texas Water Resources Institute June 17, 2021 Upper Neches Basin Clean Rivers Program Steering Committee Meeting

Texas Water Resources Institute make every drop count

Tributaries of the Neches River below Lake Palestine (Middle Neches)

ATEXAS A&M **GRILIFE**

• Watershed Bacteria Impairments:

- Jack Creek (0604C)
 - Impaired AU: 0604C_01
- Cedar Creek (0604A)
 - Impaired AU: 0604A_02
- Hurricane Creek (0604B)
 - Impaired AU: 0604B_01
- Biloxi Creek (0604M)
 - Impaired AU: 0604M_03

Watershed Statistics

- Tributaries of the Neches River below Lake Palestine (collectively called the Middle Neches Project)
 - Jack, Cedar, Hurricane and Biloxi Creeks
- Entirely located in Angelina County
- Cities: Lufkin and Hudson
- 92 sq. miles (59,131 acres)
- ~42,647 estimated population
- ~3,097 estimated on-site sewage facilities
- 2 TPDES/NPDES discharge permits bacteria reporting requirements

Indicator Bacteria Data

Cedar Creek	291.49 cfu/100mL
Hurricane Creek	276.16 cfu/100mL
Jack Creek	185.35 cfu/100mL
Biloxi Creek	152.24 cfu/100mL

TCEQ. 2020. 2020 Texas Integrated Report of Surface Water Quality for Clean Water Act Sections 305(b) and 303(d) . URL: https://www.tceq.texas.gov/waterquality/as sessment/20twqi/20txir

Percent Reductions

AU/ SWQM Station	Flow Regime	Median Flow (cfs)	Geometric Mean (cfu/100mL)	Existing Load (Billion cfu/Day)	Allowable Load (Billion cfu/Day)	Percent Reduction Required (%)
0604A_02/	High Flows	154.66	1,983.64	7,505.92	476.77	94
10478	Moist Conditions	33.20	325.24	264.20	102.35	61
	Mid-Range Flows	26.11	227.02	145.03	80.50	44
	Dry Conditions	23.75	163.87	95.21	73.21	23
	Low Flows	22.37	218.57	119.62	68.95	42
0604B_01/	High Flows	52.61	2,400.00	3,089.09	162. 8	95
13529	Moist Conditions	8.41	525.63	108.18	25.93	76
	Mid-Range Flows	6.10	325.32	48.58	18. <mark>3</mark> 2	61
	Dry Conditions	5.30	192.84	24.99	16. <mark>3</mark> 3	35
	Low Flows	4.81	105.74	12.45	14. <mark>3</mark> 4	NA
0604C_01/	High Flows	92.89	2,400.00	5,454.38	286 <mark>3</mark> 6	95
10492	Moist Conditions	9.22	342.63	77.31	28.43	63
	Mid-Range Flows	4.53	203.10	22.53	13.98	38
	Dry Conditions	2.94	77.67	5.59	9.07	NA
	Low Flows	2.01	52.82	2.59	6.19	NA
0604M_03/	High Flows	49.20	213.72	257.26	151.67	41
10499	Moist Conditions	3.92	438.15	42.00	12.08	71
	Mid-Range Flows	1.35	207.74	6.85	4.16	39
	Dry Conditions	0.72	188.14	3.34	2.23	33
	Low Flows	0.21	61.53	0.32	0.66	NA

TSD Findings

- Take Home Message from TSD:
 - Bacteria impairments in Cedar, Hurricane, Jack and Biloxi Creeks
 - Greatest exceedances occur under high-flow, moist and mid-range flow conditions
 - Elevated loadings under high flow and moist conditions likely associated with stormwater and runoff from nonpoint sources
 - Failing OSSFs can be a potential bacteria source under any flow condition
 - High-flow related loadings likely influenced by unregulated stormwater

Project Status

- TSD is available for public review: <u>https://www.tceq.texas.gov/waterquality/tmdl/nav/</u> <u>118-lufkinwatersheds-bacteria</u>
- Draft TMDL is currently being reviewed by TCEQ
- Stakeholder process has begun for I-Plan development
 - Public Stakeholder Meetings
 - November 30, 2020
 - March 25, 2021
 - Individual stakeholder meetings
 - Coordination Committee Meeting
 - June 7, 2021

Project Support

Funded by TCEQ

Texas Water Resources Institute make every drop count

Angelina River above Sam Rayburn Reservoir

- According to the 2020 Texas Integrated Report, 4 segments are impaired for not meeting primary contact recreation bacteria standard
- *E. coli* standard: geometric mean of 126 cfu/100mL and a single sample limit of 399 cfu/100mL
- Concerns for elevated total phosphorus, nitrate and ammonia

Water Body	Impaired AUs	Parameter	Data Range	AU Geometric Mean (MPN/100mL)
Angelina River above Sam Rayburn Reservoir	0611_01 0611_04	E. coli	12/01/2011- 11/30/2018	151.35 185.5
East Fork of the Angelina River	0611A_01 0611A_02	E. coli	12/01/2011- 11/30/2018	197.62 223.93
Mud Creek	0611C_01	E. coli	12/01/2011- 11/30/2018	200.88
West Mud Creek	0611D_01	E. coli	12/01/2011- 11/30/2018	378.43

TEXAS A&M GRILIFE

Will continue monitoring Mud and West Mud Creeks to increase our understanding of water quality in those impaired areas of the watershed until Fall 2021.

Monitoring Stations

- 18302
- 14477
- 10532
- 10538

Project Updates

- Have been conducting supplemental monitoring along Mud and West Mud Creeks this past year
- First stakeholder meeting will be July 13th at 10am at the Smith County Extension Office in Tyler, TX
- Riparian Training scheduled for September 22nd.
- Develop watershed characterization report
 - Will include additional data analysis for Mud and West Mud Creeks

Project Support

Funded by TSSWCB

Questions?

Contact:

Anna Gitter Research Specialist- Texas Water Resources Institute <u>anna.gitter@ag.tamu.edu</u>

Dr. Lucas Gregory, PhD Assistant Director- Texas Water Resources Institute Ifgregory@ag.tamu.edu